
Draft, August, 2024

Agent System Event Data:
Concepts, Dimensions, Applications

Qingtan Shen1, Artem Polyvyanyy1 , Nir Lipovetzky1 , and
Timotheus Kampik2

1 The University of Melbourne, Victoria 3010, Australia
{qingtan.shen1;artem.polyvyanyy;nir.lipovetzky}@unimelb.edu.au

2 SAP, Germany
timotheus.kampik@sap.com

Abstract. Event data is a collection of recorded events that capture performed
actions and observed states of business processes supported by information sys-
tems. It describes the times of event occurrences, event types, event attributes,
and process cases of events identified by one or more objects the events relate
to. Process mining uses event data to analyze and improve the processes in or-
ganizations. These processes are often performed by actors or agents, such as
employees, resources, and systems, in different roles within organizations. In this
paper, we present Agent System Event Data (ASED), a new type of event data
that describes business processes as interactions of agents. ASED provides a new
scope for analyzing individual agents involved in multiple processes, interactions
of agents, and systems of agents that enact the processes. We formalize ASED
as a conceptual data model, discuss its dimensional data modeling aspects, and
argue that event data, in general, benefits from dimensional representation. We
review existing event data types and discuss the complementary nature of exist-
ing models and ASED. Finally, we validate ASED by demonstrating its ability to
express existing business process compliance rules, significantly expanding the
scope of compliance analysis addressed by existing data models.
Keywords: Process mining, event logs, event data, agent system mining

1 Introduction

Process mining is a research discipline at the intersection of data science and business
process management [3]. It studies methods and tools to extract insights from event logs
recorded during the execution of business processes. An event log is a starting point
of every process mining study, consisting of events recorded by information systems
during executions of business processes. Each event record can contain information
about the triggering activity and process instance, as well as related business objects,
activities, resources, and agents. By leveraging event logs, organizations can achieve
operational transparency, uncover inefficiencies, and make data-driven decisions [2].

The success of a process mining study hinges on the adept extraction of relevant
event data from the information systems that execute a given process. Over the last
two decades, the process mining community has meticulously crafted a data model for
event data, encapsulating crucial entities and their interrelationships. This conventional

https://orcid.org/0000-0002-7672-1643
https://orcid.org/0000-0002-8667-3681
https://orcid.org/0000-0002-6458-2252
mailto:qingtan.shen1@unimelb.edu.au;artem.polyvyanyy@unimelb.edu.au;nir.lipovetzky@unimelb.edu.au
mailto:timotheus.kampik@sap.com

2 Qingtan Shen, Artem Polyvyanyy, Nir Lipovetzky, Timotheus Kampik

event data model, as described by the XES standard [1], serves as a cornerstone for
developing new process mining algorithms and analytics, as well as for preparing event
data for use by these techniques. Recently, new process mining paradigms, like Object-
Centric Process Mining (OCPM) [4], Robotic Process Mining (RPM) [20], and Agent
System Mining (ASM) [28] have emerged. These approaches challenge conventional
assumptions about event data, striving to establish effective models that are streamlined
in their conceptualization and operationalization while robust in their expressiveness
and capacity to facilitate analysis of intricate scenarios.

This paper reviews existing event data models and leverages insights gained to pro-
pose a new data model for ASM. ASM, a type of process mining, aims to understand
and improve organizations by interpreting them as agent-based systems. In these sys-
tems, autonomous agents, including people, machines, and AI, independently perceive
their environment, make decisions, and take actions to achieve their goals. These agents
interact dynamically and unpredictably with each other and their environment, posing
challenges in analyzing their behavior. ASM addresses this by utilizing event data gen-
erated by such agent-based systems. Specifically, this paper makes these contributions:

– Introduces the Agent System Event Data (ASED) model, providing a new conceptual
framework for event data in Agent System Mining.

– Identifies that ASED has features of a dimensional data model widely used in data
warehouses and advocates for the general use of dimensional modeling for event data
in process mining.

– Studies the relationship between the ASED model and other event data models in
process mining, highlighting the complementary nature of existing data models.

– Validates, by means of a publicly available implementation applied over real-world
event data, the ASED model by showing its ability to express a wide range of process
compliance rules related to roles, resources, and agents in processes.3

The paper proceeds as follows. The next section reviews related work on data models
for representing event data in process mining. Then, Section 3 presents event data mod-
els that are commonly used in process mining. Next, Section 4 introduces the ASED
model and discusses its dimensional nature and its relationship with the other event
data models. Section 5 validates ASED by studying its ability to express business pro-
cess compliance rules. Finally, Section 6 states concluding remarks.

2 Related Work

In this section, we explore various types of process mining, primarily focusing on the
process discovery problem studied within the domain. Process discovery involves con-
structing process models from event data [2].

Event data used as input for conventional process discovery techniques typically
includes events with three essential attributes: activity, case identifier, and timestamp.
Thus, an event represents an activity triggered at a specific timestamp within a given

3 The ASED model for the BPIC 2013 event log (10.4121/uuid:500573e6-accc-4b0c-9576-
aa5468b10cee) and an implementation of the compliance rules over ASED is available at https:
//doi.org/10.26188/26868592.v1 and https://doi.org/10.26188/26868442.v2, respectively.

https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://doi.org/10.26188/26868592.v1
https://doi.org/10.26188/26868592.v1
https://doi.org/10.26188/26868442.v2

Agent System Event Data: Concepts, Dimensions, Applications 3

process case. Events sharing the same case identifier, ordered by their timestamps, col-
lectively describe the execution of a process instance, also known as a trace. This trace
delineates the sequence of activities executed and the events they triggered.

Traditional process mining techniques typically focus on modeling and analyzing
processes based on cases captured as a reference to a single object. To overcome this
limitation, object-centric process mining (OCPM) methods have been developed to
mine and analyze processes involving multiple object types. OCPM can be applied
to event logs containing information about events, activities, and the objects and object
types associated with each activity [6]. Events processed by OCPM methods can relate
to any number of objects; for example, a delivery event may involve both a package and
the items inside it simultaneously. The fundamental concept of OCPM is to create a flat-
tened event log for each object type and apply process discovery methods to construct
models for each of them [6]. Subsequently, a merging step is applied to combine these
object-type models into a comprehensive process model based on the relationships be-
tween different objects. Van der Aalst [5] outlined three benefits of OCPM methods.
Firstly, data extraction becomes more efficient by focusing on the relationship between
events and objects without considering case information. Secondly, relationships be-
tween objects can be mined and analyzed from event logs without requiring additional
information. Thirdly, object-centric process models can provide visualization of the re-
lationships between objects. OCPM techniques have been applied in various domains.
For instance, Li and de Carvalho [21] applied OCPM to social media data to analyze
dependencies and relationships between activities and objects. Also, Hobeck and We-
ber [15] used OCPM on blockchain data to generate an object-centric, directly-follows
graph depicting relationships between contracts, markets, and transactions as objects.

Robotic Process Mining (RPM) [20] is defined as a class of techniques to identify
candidate routines and use these routines to discover specifications that can be executed
by Robotic Process Automation (RPA) bots. The input data, also called the User Inter-
action (UI) log, is collected from user-driven tasks, which refer to the data generated
from interactions between a user and software applications. A UI log is a sequence of
events completed by a single user in a single workstation. Each event has a timestamp
and is characterized by an event type (e.g., open email); no case information is stored
in the UI log. An event may have some attributes to store more information. For ex-
ample, if an event has the type open file, then the file name can be stored as an event
attribute. The RPM pipeline first preprocesses the input UI log, filters out noise, then
identifies suitable event sequences for automation, and finally extracts executable spec-
ifications for these sequences. RPM is applied to select sequences of repetitive work
that are suitable for automation, to apply RPA, and then to execute scripts for encoding
the fine-grained interactions that automate the selected work sequences.

A Multi-Agent System (MAS) is a collection of agents that achieve common or
conflicting goals through interactions. Business processes whose participants act inde-
pendently towards their goals while interacting with other entities, e.g., social inter-
actions over business activities [16], can naturally be modeled as MAS. Agent-Based
Modeling (ABM) is a technique that can be applied to describe an organization as a
system composed of autonomous agents [28]. Unlike classical process discovery tech-
niques employed to discover a Petri net or BPMN model, agent system mining com-

4 Qingtan Shen, Artem Polyvyanyy, Nir Lipovetzky, Timotheus Kampik

bines ABM and process mining techniques, aiming to infer the design of a MAS by
automatically constructing it from event data. A MAS model often contains two types
of components: agent models and models of their interactions. Agent models capture the
behaviors of autonomous agents that participate in the system, while interaction models
describe patterns of agent interactions. ASM studies ways to construct MAS models
from event data, and it comes with at least two benefits compared to classical pro-
cess discovery methods. Firstly, ASM analyses the behavior of process participants and
their interactions [28], which can avoid constructing unreadable models with activities
from the same agent scattered across distant parts of the model. Secondly, MAS models
constructed by ASM discovery do not necessarily grow in complexity with event data
volume growth [28]. Tour et al. [29] introduced the first divide-and-conquer algorithm,
called Agent Miner, for automatically discovering a MAS model from event data. The
algorithm discovers an interaction model of agents and then each agent’s behavior to fit
the interaction model.

3 Event Data Models

This section discusses data-driven, event-centric conceptual data models. In the pro-
cess mining community, Message Sequence Charts (MSCs) that utilize two syntactical
constructs, agents and messages, are applied to model message sending and receiving
between agents [19], while in the MAS community, several meta-models for agent sys-
tems are well-established. Prominently, the AALAADIN meta-model [14] is designed
to show the coordination and negotiation schemas of MAS, and the JaCaMo meta-
model [9] shows the dependencies, connections, and conceptual mappings between
three agent-oriented programming dimensions: environment, agent, and organization.
However, these meta-models are not event-centric. In Sections 3.1 to 3.3, we present
conventional, object-centric, and user interaction event-centric conceptual data models.

3.1 Conventional Event Data

Conventional event data is a collection of observed and recorded events. Many tech-
nologies, including process mining [3] and process querying [24], are applied to event
data. Figure 1 shows the conceptual model of conventional event data [6].

An event is a record that documents an activity or change within a system or appli-
cation. It is defined as a mapping from attribute names to attribute values. According to
the design in Fig. 1, an event is triggered by exactly one activity, while each activity can
trigger multiple events, and it is meaningless to keep records of activities that trigger no
events. In addition, each event refers to a process case and has a timestamp.

An event attribute refers to further specific information associated with an event,
beyond the standard event attributes of activity, case, and timestamp, providing various
perspectives on the data. Typically, each event encompasses multiple attributes designed
to capture different aspects of the event. It is worth noting that some activities may lack
event attributes entirely, and presenting irrelevant attributes for such activities serves
no purpose. An event can possess any number of event attributes, with each attribute
value precisely corresponding to one event and one event attribute. Events may utilize

Agent System Event Data: Concepts, Dimensions, Applications 5

Event

Activity Event
attribute

Event
attribute value Object

Object type Object
attribute

Object
attribute value

qualifier qualifier

Timestamp

has

triggers has

for

has

has has

for

occurred at

has related

has timestamp

Event

Activity Event
attribute

Event
attribute value

Timestamp

has

triggers has

for

occurred at
of

Case Case attribute
value

Case
attribute

has

has

User

Action Activity

Target object

Task

System

UI element

Application

UI group

associate

perform

from

execute on

belong

belong

belong

belong

from

from

from

Fig. 1: Conventional event data model [6]

the same attribute to capture information from similar perspectives. However, some
events may lack attributes or attribute values. Thus, the relationship between event and
event attribute value is mandatory-to-optional. Nevertheless, if an activity with multiple
attributes triggers an event, every attribute must have a value corresponding to the event.

A case represents a chronological sequence of events that traverse a particular pro-
cess. A case can comprise any number of events, and some events may not be associated
with any specific case. In conventional event data, it is typically assumed that an event
cannot be linked to more than one case. Thus, the relationship between events and cases
in the design in Fig. 1 captures this relation as many events can relate to one case. Sim-
ilarly to events and activities, a case may possess any number of case attributes. Case
attributes encapsulate aggregated knowledge derived from all events within the case,
enabling the application of querying and other analytical techniques at a higher level of
abstraction.

3.2 Object-Centric Event Data

Van der Aalst [6] introduced an Object-Centric Event Data (OCED) model. Similar to
the conventional event data model, the OCED model in Fig. 2 has entities and relation-
ships for storing information about events and activities. In addition, OCED supports
collecting information about objects; hence, the corresponding entities and relation-
ships are added to the OCED meta-model. Every object has one object type, e.g., object
O1 can be of type package, while object O2 can be of type item. An event can relate to
any number of objects, and an object can relate to any number of events. For example,
objects O1 and O2 can be involved in the same delivery event. Similarly, object O1 can
be involved in multiple events, e.g., a delivery event and a payment event. An object
type can have any number of object attributes, and these attributes should have values.
An attribute value of an object can differ across different timestamps, which supports
updating a single object attribute instead of updating the complete object. For example,
the location attribute of object O1 can be updated at different timestamps. Different ob-
jects may have relationships, e.g., item O2 is in package O1. The OCED model resolves
the convergence and divergence problems common in convention event data [4]. The

6 Qingtan Shen, Artem Polyvyanyy, Nir Lipovetzky, Timotheus Kampik

Event

Activity Event
attribute

Event
attribute value Object

Object type Object
attribute

Object
attribute value

qualifier qualifier

Timestamp

has

triggers has

for

has

has has

for

occurred at

has related

has timestamp

Event

Activity Event
attribute

Event
attribute value

Timestamp

has

triggers has

for

occurred at
of

Case Case attribute
value

Case
attribute

has

has

User

Action Activity

Target object

Task

System

UI element

Application

UI group

associate

perform

from

execute on

belong

belong

belong

belong

from

from

from

Fig. 2: Object-centric event data model [6]

convergence problem happens when events that involve more than one object are repli-
cated. For instance, when O1 and O2 are delivered together, two events are often used to
describe this delivery activity in the conventional event data. The divergence problem
happens when events that relate to the same object are scattered across different cases.
OCED can solve this issue by constructing a case of events for each object. OCED can
be used, for instance, in graph embeddings to capture information about the structure
of object relationships for subsequent process mining analysis [8].

3.3 User Interaction Event Data

Abb and Rehse [7] presented a User Interaction Event Data (UIED) model for storing
low-level activities performed by users during the execution of tasks using software
systems. Figure 3 shows the UIED model. Each event in the UIED describes a single
interaction between a user and an interface. The activity entity combines the action and
the target part of the UIED. It corresponds to the event entity in the conventional event
data model. An activity combines a single user and a single target object. The action
entity combines the user entity and the activity entity and stores the behavior the user
performs using the input devices, such as click on mouse. A user can execute any num-
ber of actions, while an action can only be performed by exactly one user. The target
object entity records the information about the interface object over which the action
is executed. The tree-shaped UI component hierarchy is introduced to capture different
levels of knowledge about the target object. Each target object refers to such UI hierar-
chy components. The lowest-level elements of the interface are stored in the UI element
entity, such as buttons, text boxes, and their current states. Lowest-level elements can
be combined into UI groups based on their functionality, such as the login task. The re-
lationship between UI groups is also modeled in UIED, which is useful for mining the
interactions between high-level functions. The UI application and the UI system entities
can store higher-level interface information, e.g., the process instance and the system-
level action, respectively. Although one can apply OCED to user interaction data and
store the information about users and UI objects as objects, UIED has two benefits.

Agent System Event Data: Concepts, Dimensions, Applications 7

Event

Activity Event
attribute

Event
attribute value Object

Object type Object
attribute

Object
attribute value

qualifier qualifier

Timestamp

has

triggers has

for

has

has has

for

occurred at

has related

has timestamp

Event

Activity Event
attribute

Event
attribute value

Timestamp

has

triggers has

for

occurred at
of

Case Case attribute
value

Case
attribute

has

has

User

Action Activity

Target object

Task

System

UI element

Application

UI group
associates

performs

from

executed on

has

has

has

has

from

from

from

UI hierarchy

qualifier
has

Fig. 3: User interaction event data model [7]

Firstly, for different events, UIED can store dynamic object attributes attached to these
events in the entities from the UI hierarchy component. Secondly, object attributes can
be shared in different object types based on their UI hierarchy components. However,
storing the same target object with different attributes can lead to redundancy.

4 Agent System Event Data

This section presents our Agent System Event Data (ASED) model (Section 4.1), dis-
cusses the aspects that characterize ASED as a dimensional model (Section 4.2), ex-
plains the relation of ASED to other event data models (Section 4.3), and shows that
publicly available event data can already be represented using ASED (Section 4.4).

4.1 Entities and Relationships

Figure 4a shows the ASED model captured using the ER notation. The entities of the
model can be split into three categories: conventional process mining entities (high-
lighted with blue background in the figure), process entity (green), and MAS entities
(red). Next, we discuss entities from each of these categories in detail, emphasizing the
relevant relationships within and across the categories.

Conventional Entities. Four entities in the ASED model are borrowed from the con-
ventional model. These are the Event , Case, Timestamp, and Activity entities. Similar
to the conventional process mining, we assume that each event has exactly one process
Case it refers to and is triggered by exactly one Activity at exactly one Timestamp. In
turn, an Activity, Case, and Timestamp can refer to multiple events. The meaning of
these entities is the same as in the conventional process mining; cf. Section 3.1.

Similar to the Event and Case entities in the conventional data model, every entity
of the ASED model can have multiple and arbitrary attribute values, implemented as
the AttributeValue entity shown in Fig. 4b. This associative entity implements a many-
to-many relationship between Entity and Attribute, with a particular value stored as

8 Qingtan Shen, Artem Polyvyanyy, Nir Lipovetzky, Timotheus Kampik

Role

Roleplay

Agent

is involved in

engages in

causesperforms
Organization Event

Timestamp

Activity

Case

Process

triggers

occurs at

has

has

Attribute

Attribute
value

Entity

has

has

(a)

Role

Roleplay

Agent

is involved in

engages in

causesperforms
Organization Event

Timestamp

Activity

Case

Process

triggers

occurs at

has

has

Attribute

Attribute
value

Entity

has

has

(b)

Fig. 4: (a) The Agent System Event Data model and (b) tracking of entity attributes

an attribute of this association. In a concrete implementation of the ASED model, this
pattern of attribute values can be replicated for any group of entities in the model.
Specifically, every such replica should create copies of Attribute and AttributeValue
entities, specific to the selected group of ASED entities, and link all the entities in the
group to the AttributeValue entity replica via the one-to-many relationship.

Process Entity. A Process is a collection of activities that, when performed, leads to
an objective of an organization, for instance, an insurance claim handling process, an
implementation of a clinical guideline, or a process of issuing a birth certificate. A Case
refers to an instance of a process. For example, an insurer usually handles multiple
instances of a health insurance process, one per claim, with concrete activities executed
to settle the claim. In conventional process mining, it is assumed that the same process
triggers all events in an event log. An agent in an organization is often simultaneously
involved in multiple instances of different processes. For instance, a financial officer
can be simultaneously involved in multiple instances of risk management and financial
reporting processes. To understand the essence of the agent’s performance, including
context switches and task prioritization and transition planning, one needs to expand the
scope of event data to the overall landscape of processes in an organization. Thus, in the
ASED model, a Process must have at least one Case, whereas, to ensure compatibility
with conventional event data, it is optional for a Case to refer to one Process.

MAS Entities. An Agent is a person or machine that can perform activities to produce
specified effects. In an organization, examples of agents include employees, manufac-
turing equipment, and AI agents performing automated decision-making. A Role de-
fines duties and expectations associated with a particular job in an organization, such
as specific activities that an agent in this role is responsible for. An agent can relate
to multiple roles. For example, an academic can simultaneously relate to the roles of a
lecturer to teach classes and a researcher to produce new knowledge. An Organization
is a group of agents with a particular purpose, for example, a government department,
a business, or a healthcare institution. One can also interpret a group of agents as an
organizational unit, a distinct team or a division within an organization. Organization
units can be structured according to their functional or divisional aspects within orga-
nizations. Tracking such structural relationships between organization units is beyond

Agent System Event Data: Concepts, Dimensions, Applications 9

the scope of the ASED model. A Roleplay is then an agent from a specific organization
performing an activity to fulfill their duties and responsibilities in a specific role.

Roleplay is an associative entity that captures the many-to-many relationship be-
tween agents, roles, and organizations. As already explained, an agent can play multi-
ple roles in an organization, and an organization can involve multiple agents. Similarly,
multiple agents can play the same role. Also, the same agent and the same role can be in-
volved in different organizations. We require that a roleplay refers to an agent, whereas
it is optional for a roleplay to refer to a role or an organization. In the latter case, we
assume that the agent plays some default role in a default organization. The cardinal-
ity of the relationship between Roleplay and Event is many-to-many. Indeed, an agent
from an organizatoin playing a role can do that multiple times to cause many events.
For instance, an academic from a research group writing a research paper wearing their
“scientist hat” can trigger many events, including paper submission, paper review, and
camera-ready version submission. At the same time, an event, in general, can be caused
by several roleplays. For example, a supervisory meeting event for a research fellow
may refer to the fellow, their principal and co-supervisors, collaborators, and research
partners, each being in a corresponding roleplay for their organization with respect to
this event. To ensure compatibility with the conventional event data, it is optional for
an event to refer to a roleplay. In contrast, the existence of a roleplay instance must be
justified by relating it to an event.

4.2 Dimensions

Dimensional modeling is a data modeling technique used in data warehousing to or-
ganize and structure data for efficient querying and analysis [22, 23]. At the core of
dimensional modeling is the concept of a star schema, which consists of a central fact
table surrounded by dimension tables. The fact table contains quantitative measures or
metrics (facts) related to a business process or event, while dimension tables provide
descriptive attributes for analyzing the facts. Dimension tables typically represent enti-
ties such as time, location, and objects that characterize the facts in the fact table, and
they serve as entry points for querying and filtering data in the fact table. The simple
and intuitive structure of a star schema facilitates fast and easy query performance, as
well as simplified data retrieval and analysis.

In a star schema, the fact table serves as the focal point for analyzing information
and trends, while dimensional tables provide context for interpreting the facts. This
model facilitates multidimensional analysis of the data, supporting complex reporting
requirements. Additionally, the denormalized structure of a star schema minimizes join
operations in queries, leading to improved query performance and reduced database
complexity. Overall, dimensional modeling and star schemas provide a flexible and
scalable framework for organizing and analyzing data, making it a popular choice for
decision support and business intelligence applications.

The ASED model adheres to the structure of a star schema, or a dimensional model,
commonly encountered in data warehouses. Within this schema, the Event entity and
the Roleplay entity can be seen as two fact tables, while Activity, Case, Timestamp,
Agent , Role, and Organization are dimensional tables that characterize the facts. In
addition, the Process entity refines the Case entity to define a normalized dimensional

10 Qingtan Shen, Artem Polyvyanyy, Nir Lipovetzky, Timotheus Kampik

hierarchy [23]. It is worth noting that the Roleplay entity and the Event entity are in
a many-to-many relationship, deviating from the typical structure of a star schema in
which a fact table is related to dimensional tables via one-to-many relationships. Such
a many-to-many relationship can be implemented using an auxiliary table RoleplayTo-
Event in which the related identifier of roleplays and events are matched. Also, note
that this deviation from a conventional dimensional design can be addressed through
various means. For example, the relationship between Event and Roleplay can be con-
strained to a many-to-one relationship by tracking only dominant roleplays for each
event [23]. Alternatively, a many-to-many relationship can be interpreted as multiple
one-to-one relationships, assuming each event is associated with several roleplays, each
corresponding to a distinct role.

We recommend dimensional modeling as a preferred approach for capturing event
data in process mining due to its ability to efficiently organize and analyze complex rela-
tionships between entities that identify events. By organizing event data into fact tables
and dimension tables providing descriptive attributes, dimensional modeling facilitates
the exploration and analysis of events from multiple perspectives. This approach al-
lows process mining practitioners to quickly identify patterns, trends, and correlations
within event data, enabling insights into process behavior, performance, and compli-
ance. The denormalized structure of star schemas supports faster query performance
and streamlined data retrieval [24]. Furthermore, the multidimensional nature of dimen-
sional modeling supports advanced analytical techniques, such as OLAP (Online An-
alytical Processing), enabling interactive and dynamic exploration of event data across
various dimensions. Overall, dimensional modeling offers a robust framework for cap-
turing, organizing, and analyzing event data in process mining, empowering organiza-
tions to extract valuable insights and optimize their business processes effectively.

4.3 Compatibility

ASED can be applied in different process mining paradigms, such as Agent System
Mining, Robotic Process Mining (or Task Mining), and Object-Centric Process Mining,
see Section 2 for the discussion of these process mining types. In this section, we discuss
the relation between ASED and event data models used in these process mining types.

Agent System Mining. Agent System Mining (ASM) requires a collection of event
data, each characterized by a case identifier, a timestamp, an activity, and an agent. In
classical event data, the case identifier and activity that triggered an event are stored
within the Case entity and the Event entity, respectively, and the agent information is
stored within the event attributes. In ASED, all agent attributes are stored in the Agent
entity, whereas the other three types of information are stored in the same entities as in
classical event data. Existing algorithms for discovering agent-based models from event
data in ASM require that every event is triggered by exactly one agent [29]. These al-
gorithms can be extended to benefit from the ability of ASED to express the fact that
an event can be triggered by several agents playing different roles in different organiza-
tions. In addition, ASED, for the first time, argues that event data may encompass data
stemming from multiple processes, a phenomenon that ASM can benefit from when an-
alyzing agents’ performance across different functions [28]. Future work in ASM will

Agent System Event Data: Concepts, Dimensions, Applications 11

explore the benefits of ASED and the boundaries of what models can be inferred based
on the available concepts, and which analysis these concepts can support.
Task Mining. ASED can be applied to support user interaction mining techniques. One
can interpret the Agent and Role entities in ASED as the User and Action entities in
UIED, respectively, while the Event entity can be interpreted as the Activity entity in
UIED. In ASED, multiple agents (users) can be involved in the same event, e.g., an
online meeting. The information related to these user actions is stored in the Roleplay
entity. This many-to-many relationship is useful when doing task mining on collabora-
tion platforms that track interactions between users. In terms of dimensional modeling,
the Event entity in ASED is a fact table characterized by the dimensions referred to by
the keys of the Roleplay, Activity, and Timestamp entities. Hierarchical dimensional
tables can also be used to characterize the Target object entity to store attributes from
the UI hierarchy component. Such dimensional tables can support efficient querying and
are suitable for mining the relationships between different UI levels. Furthermore, the
Task entity in UEID can be interpreted as the Process entity in ASED, while the Target
object entity in UIED can be accepted as the Activity entity in ASED. Consequently,
one can combine the features of ASED and UIED by linking the UI hierarchy concepts
in UIED to the Activity entity in ASED, obtaining the benefits of both designs.
Object-Centric Process Mining. Object-Centric Event Data (OCED) can be integrated
with ASED by relating the Event entity in ASED with the Object entity in OCED. The
relationship between the ASED Event entity and the OCED Object entity should also
be borrowed from the OCED model; that is, it is a many-to-many relationship. The other
entities and relationships from both ASED and OCED should then be included in the
integrated event data model without further modifications. In such an integrated data
model, one can capture relationships between agents, events, and objects, benefiting
from both original designs. Consequently, according to the integrated model, an event
can be triggered by any number of agents playing different roles in their organizations.
At the same time, an event in such an integrated world can be related to any number
of objects, providing scopes for identifying process cases as various combinations of
objects. This ability to identify process cases as combinations of objects involved in the
occurrence of events constitutes the main benefit of OCED over the conventional event
data model [5]. Such an integrated data mode supports the querying of the informa-
tion between agents and objects. In addition, it can be used to study resource allocation
across various processes and cases. Finally, such an integrated model supports tracking
of the relationships between objects and processes and between objects and organiza-
tions. This is particularly useful for relating business objects to relevant departments
and processes within organizations.

4.4 Feasibility

As ASED is a new data model, there are no publicly available event datasets captured in
ASED. In this section, we study the feasibility of obtaining an event dataset that adheres
to the ASED requirements by converting a publicly available conventional event log to
ASED. Specifically, we convert the BPIC 2013 event log4 into the ASED format. The

4 https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee

https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee

12 Qingtan Shen, Artem Polyvyanyy, Nir Lipovetzky, Timotheus Kampik

BPIC 2013 event log is an extract of the Volvo IT Incident and Problem Management
event log, which stores information about agents, resources, organizations, and pro-
cesses as event attributes. We implemented the ASED model as a relational database.5

The attributes of the various ASED entities were obtained based on the available at-
tributes of the Event entity from the BPIC 2013 event log. The implementation of the
conversion is publicly available.6 We also make publicly available the result of the con-
version of the BPIC 2013 event log into the ASED dataset. To facilitate accessibility of
the results, we store the tables of the derived schema in the CSV format7, and keep the
timestamp values in the event fact table. In the converted ASED event log, each event is
performed by a single roleplay. However, in general, it is possible to map conventional
events to ASED events performed by several roleplays. For example, such a situation
may arise when the attributes of some specific events contain information about more
than one agent, their roles, and organizations. Alternatively, one can decide to cluster
conventional events into high-level ASED events and model them as such caused by
all the roleplays involved in the corresponding low-level events. However, such a clus-
tering step may require additional information besides the conventional event log, e.g.,
configuration of the clustering technique or manual definitions of high-level events.

5 Process Compliance

Next, we validate the ability to express process compliance rules that relate to the man-
agement of agents, roles, and organizations in processes over the ASED data model. To
identify relevant compliance rules, we performed a literature search. We executed the
query “(process compliance) AND (role OR resource OR agent OR object)” on Web of
Science to search for relevant papers. On May 17, 2024, this query returned 58 papers.
After screening the titles, abstracts, and the full content of the papers, we identified 8
papers that discuss process compliance rules of interest. We examined these papers and
extracted all relevant compliance rules from them, resulting in a total of 40 identified
rules. Each of these compliance rules was evaluated to determine if it can be imple-
mented over all event data models discussed in Section 3 and ASED. The conventional
event data and OCED cannot express any of these 40 compliance rules, while UIED
can express some of the rules that address the relationship between agents and activi-
ties. The summary of the rules supported by ASED and UIED is given in Table 1.

The identified compliance rules address relationships between multiple attributes,
such as role, case, agent, and time. Most of these rules can be implemented over the
ASED model, as is documented in the last column of Table 1. We implemented all
compliance rules supported by ASED.8 In addition, we converted BPIC 2013, a publicly
available industrial event log, to ASED.7 We evaluated the implemented rules over the
obtained ASED model to validate the claims of ASED support in Table 1.

For example, one can implement the rule “A1 (an agent) should not play different
roles in the same case” (Rule 18 in Table 1) by checking, for each case, if A1 is in-

5 https://doi.org/10.26188/26868532.v1
6 https://doi.org/10.26188/26868586.v1
7 https://doi.org/10.26188/26868592.v1
8 https://doi.org/10.26188/26868442.v2

https://doi.org/10.26188/26868532.v1
https://doi.org/10.26188/26868586.v1
https://doi.org/10.26188/26868592.v1
https://doi.org/10.26188/26868442.v2

Agent System Event Data: Concepts, Dimensions, Applications 13

Table 1: Process compliance rules, where T1, T2, and T3 refer to tasks/activities, A1 and A2 refer
to agents, R1 and R2 refer to roles, O1 and O2 refer to organizations (organization units), P1 and P2

refer to processes, and M refers to a time period; “✓” – rule supported; “×” – rule not supported;
“AS” – Agent System Event Data; “UI” – User Interaction Event Data

No. Compliance rules Ref. UI AS
1 T1 must be done by A1 [11] ✓ ✓
2 A1 is responsible for T1 [11] × ×

3 T1 must be done by R1 [11, 13, 26] × ✓
4 T1 must be done by O1 [11] × ✓
5 T1 must be done by an agent in list [A1, A2, . . .] [11] ✓ ✓
6 An agent in list [A1, A2, . . .] is responsible for T1 [11] × ×

7 T1 must be done by a role in list [R1,R2, . . .] [11, 18] × ✓
8 T1 must be done by an organization in list [O1,O2, . . .] [11] × ✓
9 T1,T2 should not be done by the same agent in one case [13] × ✓

10 T1,T2 should not be done by the same role in one case [13] × ✓
11 T1,T2 must be done by the same agent in one case [13] × ✓
12 T1,T2 must be done by the same role but different agents in one case [13] × ✓
13 R1,R2 must be involved together in T1 [13] × ✓
14 A1, A2 must be involved together in T1 [13] × ✓
15 A1 should not play only role R1 in the whole process [12] × ✓
16 The number of roles A1 plays in the whole process is limited [12] × ✓
17 The number of cases A1 participates in is limited [12] × ✓
18 A1 should not play different roles in the same case [12] × ✓
19 If A1 does T1 in R1, then A1 should not do T2 in R2 in the same case [12] × ✓
20 If A1 does T1, then A1 must perform T2 in same case [17] × ✓
21 If O1 does T1, then this T1 must be done by A1 in O1 [17] × ✓
22 If A1 in O1 does T1, then O2 must perform T2 earlier in same case [17] × ✓
23 If O1 does T1, then O2 must perform T2 later in same case [17] × ✓
24 If T1,T2 are directly followed, then they cannot done by a same agent [17] × ✓
25 R1 is always responsible for R2 [27] × ×

26 Number of activities done by A1 in the whole process is limited [18] × ✓
27 Number of activities done by R1 in the whole process is limited [18] × ✓
28 Two tasks from two cases of different processes should not be done by

the same role
[18] × ✓

29 At least one activity in a case must be done by roles in the middle level [18] × ×

30 R1 can perform a maximum of N activities in any case of P1 [18] × ✓
31 T1,T2 should be done by different organizations [25] × ✓
32 If A1 does T1 and not T2 in period M, then A1 must do T3 later [25] ✓ ✓
33 If A1 does T1 and not T2 in period M, then R1 must do T3 later [25] × ✓
34 T1 must be done by an agent with R1 in O1 [26] × ✓
35 If T1 occurs before T2 in a case, they must be done by the same agent [26] ✓ ✓
36 If T1 occurs before T2 in a case, they must be done by agents from O1 [26] × ✓
37 If T1 is done by A1 in R1, T2 should be done by a lower-level role before [26] × ×

38 If T1 and T2 are done by the same organization and T3 occurs, T3 should
be done by R1

[26] × ✓

39 If A1 does T1,T2 sequentially, then A1 must in O1 [26] × ✓
40 If T1,T2 occurs before T3, then T1,T2 must be done by agents in O1 [26] × ✓

14 Qingtan Shen, Artem Polyvyanyy, Nir Lipovetzky, Timotheus Kampik

Table 2: (a) Instances of the Event entity, (b) instances of the Roleplay entity, and (c)
relationships between the Event and Role entities

(a)

ID Case Activity Timestamp
E1 C1 T1 2010-03-31 14:59

E2 C1 T1 2010-03-31 15:00

E3 C1 T2 2010-03-31 15:45

E4 C1 T1 2010-04-06 14:44

E5 C1 T2 2010-04-06 14:45

(b)

ID Agent Role Organization
RP1 A1 R1 O1

RP2 A1 R2 O1

RP3 A2 R2 O1

RP4 A2 R1 O1

RP5 A3 R1 O1

(c)

Event Roleplay
E1 RP1

E2 RP1

E3 RP2

E4 RP3

E5 RP4

volved only in one role associated with all events that relate to that case. This logic over
the ASED model is captured in Algorithm 1. Table 2a and Table 2b lists instances of
the Event and Role entities, respectively, while Table 2c implements the EventToRole-
play relationship by relating events to roleplays that were involved in triggering them.
Consider that Table 2a stores all events from case C1. Table 2c suggests that four role-
plays were involved in this case. These roleplays can be used to extract roles and agents
that define them; see Table 2b. Assume that Algorithm 1 is invoked for the input of
agent identifier A1 and entity instances and relationships in Tables 2a to 2c. As there
is only one case (C1), the for loop at Line 2 of the algorithm will execute once. In
this only iteration, the eids variable will be assigned set {E1,E2,E3,E4,E5}; this is the
set of all events in the currently analyzed case (cf. Line 3). Then, at Line 4, all role-
plays relevant to the events in eids are extracted. Hence, it holds that rids is equal to
{RP1,RP2,RP3,RP4}. At Line 5, the algorithm computes all roles the requested agent
(A1) played in roleplays from rids and stores them in roles. If the number of played
roles exceeds one (|roles| > 1), the case is added to the res set, which was initialized
as the empty set at Line 1. If the returned set res is empty, there are no cases in which
the agent plays more than one role, and thus, the rule is satisfied; otherwise, the rule is
violated. As res contains C1, compliance rule 18 is violated on this example input.

The ASED model does not support five of the surveyed compliance rules (cf. Ta-
ble 1). Rules 2 and 6 refer to the responsibilities of agents when performing activities.
For example, Rule 2 “A1 is responsible for T1” requests to check that agent A1 always
acts in the highest role when performing activity T1. This check can be performed in
two steps. Firstly, one needs to confirm that A1 is involved in the execution of T1. Sec-
ondly, when a group of agents is involved in the execution of T1, one needs to confirm
that A1 has the highest-level role in this agent group [11]. ASED supports checking the
first step, while the second step cannot be checked because ASED does not explicitly
model the hierarchy of roles. Therefore, Rules 2 and 6 cannot be checked over ASED.
Rule 25 requests that “R1 is always responsible for R2,” meaning that if R2 is involved
in a case, then R1 must also be involved in the same case, and the role level of R1 must
be higher than R2 [18]. Again, we cannot check this rule without knowing the role lev-
els. The knowledge of role hierarchy is also necessary when checking Rules 29 and 37.
Therefore, to support checking these five rules, one should model role levels explicitly
or infer them from available data.

It is significantly more challenging to check the compliance rules from Table 1 over
other event data models. In the conventional model, it is impossible to check the rules

Agent System Event Data: Concepts, Dimensions, Applications 15

Algorithm 1: Compliance rule 18 from Table 1 over ASED
Input: An agent identifier aid, instances of the Event and Roleplay entities, and an

EventToRoleplay relationship between the Event and Roleplay entities.
Output: The set of all case identifiers in which agent aid plays more than one role.

1 res← ∅;
2 for c ∈ Case do
3 eids← {e.ID | e ∈ Event ∧ e.Case = c.ID};
4 rids←

{
e2r.Roleplay | e2r ∈ EventToRoleplay ∧ e2r.Event ∈ eids

}
;

5 roles←
{
r.Role | r ∈ Roleplay ∧ r.ID ∈ rids ∧ r.Agent = aid

}
;

6 if |roles| > 1 then res← res ∪ {c.ID};

7 return res

by relying only on event attributes, as the semantics of such attributes are unspecified.
For instance, it is not possible to match agents and roles if an event has two attributes
storing information about agents and two attributes storing information about roles un-
less some additional knowledge about the mapping is available. Specifically, the event
“hold a meeting” may involve many participants in different roles, and it may be neces-
sary to relate participants to corresponding roles. OCED does not model agents, roles,
roleplays, or organizations explicitly. However, the generic nature of OCED, imple-
mented via objects and their qualified relationships, allows for the encompassing of
any data schema, including ASED. This approach, however, requires external schema
knowledge that is not initially available in OCED. The original OCED model, hence,
cannot support any compliance rules listed in Table 1. UIED can describe hierarchies of
roles and store agent information in the target object entity. However, it is not possible
to express that a specific agent can play different roles. These aspects of UIED make it
suitable for implementing only four compliance rules out of those listed in Table 1.

As all compliance rules currently not supported by ASED relate to responsibilities
of agents [10], the extension of ASED toward modeling of responsibilities of agents or
inference of responsibilities based on ASED is future work.

6 Conclusion

This paper presents Agent System Event Data (ASED), a model aimed at conceptual-
izing the event data used in Agent System Mining. We provide a detailed exposition
of ASED and conduct a comprehensive review of various event data models in process
mining, elucidating the relationship between ASED and the existing models. Further-
more, we subject ASED to a rigorous validation by demonstrating how ASED can be
used to verify a diverse array of process compliance rules pertaining to roles, agents,
and resources. Through this validation, we confirm that ASED significantly expands the
coverage of compliance rules supported by existing event data models.

Several limitations of this work should be acknowledged. First, one can conduct a
systematic literature review to expand the list of identified relevant compliance rules
used to validate the ASED model. Second, ASED currently lacks the capability to
model responsibilities of agents and superior-subordinate relationships between agents.

16 Qingtan Shen, Artem Polyvyanyy, Nir Lipovetzky, Timotheus Kampik

Lastly, the discussion of ASED’s feasibility does not account for the practicality of di-
rectly recording the data generated by existing information systems. Future work will
aim to address these limitations. Lastly, we plan to explore the ability of ASED to fa-
cilitate the discovery of agent-based models from event data.

Acknowledgment. This work was in part supported by the Australian Research Council
project DP220101516.

References

[1] IEEE Standard for eXtensible Event Stream (XES) for achieving interoperability in event
logs and event streams. IEEE Std 1849-2023 (Revision of IEEE Std 1849-2016) (2023)

[2] van der Aalst, W.M.P.: Process mining: Overview and opportunities. ACM Trans. Manag.
Inf. Syst. 3(2), 7:1–7:17 (2012)

[3] van der Aalst, W.M.P.: Process Mining—Data Science in Action. 2nd edn. (2016)
[4] van der Aalst, W.M.P.: Object-centric process mining: Dealing with divergence and conver-

gence in event data. In: SEFM, Lecture Notes in Computer Science, vol. 11724, pp. 3–25,
Springer (2019)

[5] van der Aalst, W.M.P.: Object-centric process mining: An introduction. In: ICTAC Summ-
mer School, Lecture Notes in Computer Science, vol. 13490, pp. 73–105, Springer (2021)

[6] van der Aalst, W.M.P.: Object-centric process mining: Unraveling the fabric of real pro-
cesses. Mathematics 11(12), 2691 (2023)

[7] Abb, L., Rehse, J.: A reference data model for process-related user interaction logs. In:
BPM, Lecture Notes in Computer Science, vol. 13420, pp. 57–74, Springer (2022)

[8] Adams, J.N., Park, G., van der Aalst, W.M.P.: Preserving complex object-centric graph
structures to improve machine learning tasks in process mining. Eng. Appl. Artif. Intell.
125, 106764 (2023)

[9] Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented program-
ming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

[10] Cabanillas, C., Resinas, M., Cortés, A.R.: Automated resource assignment in BPMN models
using RACI matrices. In: OTM Conferences (1), Lecture Notes in Computer Science, vol.
7565, pp. 56–73, Springer (2012)

[11] Cabanillas, C., Resinas, M., Cortés, A.R.: Introducing a mashup-based approach for design-
time compliance checking in business processes. In: CAiSE Workshops, Lecture Notes in
Business Information Processing, vol. 112, pp. 337–350, Springer (2012)

[12] Dalpiaz, F., Cardoso, E., Canobbio, G., Giorgini, P., Mylopoulos, J.: Social specifications
of business processes with Azzurra. In: RCIS, pp. 7–18, IEEE (2015)

[13] Elgammal, A., Türetken, O., van den Heuvel, W., Papazoglou, M.P.: Formalizing and ap-
pling compliance patterns for business process compliance. Softw. Syst. Model. 15(1), 119–
146 (2016)

[14] Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in
multi-agent systems. In: ICMAS, pp. 128–135, IEEE Computer Society (1998)

[15] Hobeck, R., Weber, I.: Towards object-centric process mining for blockchain applications.
In: BPM Blockchain and RPA Forum, Lecture Notes in Business Information Processing,
vol. 491, pp. 51–65, Springer (2023)

[16] Ito, S., Vymetal, D., Sperka, R., Halaska, M.: Process mining of a multi-agent business
simulator. Comput. Math. Organ. Theory 24(4), 500–531 (2018)

[17] Knuplesch, D., Reichert, M.: A visual language for modeling multiple perspectives of busi-
ness process compliance rules. Softw. Syst. Model. 16(3), 715–736 (2017)

Agent System Event Data: Concepts, Dimensions, Applications 17

[18] Kumar, A., Liu, R.: A rule-based framework using role patterns for business process com-
pliance. In: RuleML, Lecture Notes in Computer Science, vol. 5321, pp. 58–72, Springer
(2008)

[19] Lassen, K.B., van Dongen, B.F.: Translating message sequence charts to other process lan-
guages using process mining. Trans. Petri Nets Other Model. Concurr. 1, 71–85 (2008)

[20] Leno, V., Polyvyanyy, A., Dumas, M., Rosa, M.L., Maggi, F.M.: Robotic process mining:
Vision and challenges. Bus. Inf. Syst. Eng. 63(3), 301–314 (2021)

[21] Li, G., de Carvalho, R.M.: Process mining in social media: Applying object-centric behav-
ioral constraint models. IEEE Access 7, 84360–84373 (2019)

[22] Moody, D.L., Kortink, M.A.: From ER models to dimensional models: Bridging the gap
between OLTP and OLAP design, Part 1. Journal of Business Intelligence 8, 7–24 (2003)

[23] Moody, D.L., Kortink, M.A.: From ER models to dimensional models Part II: Advanced
design issues. Journal of Business Intelligence 8, 20–29 (2003)

[24] Polyvyanyy, A.: Process Querying Methods. Springer, Cham (2022)
[25] Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business process

compliance. In: BPM, Lecture Notes in Computer Science, vol. 4714, pp. 149–164, Springer
(2007)

[26] Semmelrodt, F., Knuplesch, D., Reichert, M.: Modeling the resource perspective of
business process compliance rules with the extended compliance rule graph. In: BM-
MDS/EMMSAD, Lecture Notes in Business Information Processing, vol. 175, pp. 48–63,
Springer (2014)

[27] Soto, M., Münch, J.: Focused identification of process model changes. In: ICSP, Lecture
Notes in Computer Science, vol. 4470, pp. 182–194, Springer (2007)

[28] Tour, A., Polyvyanyy, A., Kalenkova, A.A.: Agent system mining: Vision, benefits, and
challenges. IEEE Access 9, 99480–99494 (2021)

[29] Tour, A., Polyvyanyy, A., Kalenkova, A.A., Senderovich, A.: Agent miner: An algorithm for
discovering agent systems from event data. In: BPM, Lecture Notes in Computer Science,
vol. 14159, pp. 284–302, Springer (2023)

	Agent System Event Data: Concepts, Dimensions, Applications
	Introduction
	Related Work
	Event Data Models
	Conventional Event Data
	Object-Centric Event Data
	User Interaction Event Data

	Agent System Event Data
	Entities and Relationships
	Dimensions
	Compatibility
	Feasibility

	Process Compliance
	Conclusion

